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ABSTRACT: Numerical simulations have been undertaken
for the film-blowing process of viscoelastic fluids under dif-
ferent operating conditions. Viscoelasticity is described by an
integral constitutive equation of the K-BKZ type with a spec-
trum of relaxation times, which can fit the experimental data
well for the shear and extensional viscosities and the normal
stresses measured in shear flow. Nonisothermal conditions
are considered by applying the Morland–Lee hypothesis,
which incorporates the appropriate shift factor and pseudo-
time into the constitutive equation. The momentum and
energy equations are expressed in the machine direction only
by using a quasi-one-dimensional approach introduced ear-
lier by Pearson and Petrie. The resulting system of differen-

tial equations is solved using the finite element method and
the Newton-Raphson iterative scheme. The method of solu-
tion was first checked against the Newtonian and Maxwell
results for various film characteristics given earlier. The
simulations are compared with available experimental data
and previous simulations in terms of film shape, velocity,
stresses, and temperature. The present results show that the
existing modeling of force balances is inadequate for quanti-
tative agreement with the experimental studies. � 2007 Wiley
Periodicals, Inc. J Appl Polym Sci 105: 2098–2112, 2007

Key words: nonisothermal film blowing; K-BKZ constitutive
equation; viscoelasticity; quasi-one-dimensional approach

INTRODUCTION

The film-blowing process is used industrially to man-
ufacture plastic films that are biaxially oriented.
Many attempts have been made to predict and model
this complex but important process, which continues
to mystify rheologists and polymer processing engi-
neers worldwide. A constitutive equation, able to pre-
dict well the polymer melt in all forms of deforma-
tion, is required to model the process, together with
the standard conservation equations of continuity,
momentum, and energy. Pearson and Petrie1,2 were
the first to predict the forces within the blown film by
the use of the thin-shell approximation, force balan-
ces, and the Newtonian constitutive equation. The
use of the thin-shell approximation and force balances
is standard in any attempt to model the film-blowing
process and is also used in this work.

The process itself is portrayed in Figure 1, where a
polymer melt is extruded through an annular die,
and biaxial extension is effected by slight internal
pressurization and axial drawing. Cooling air is sup-
plied by air ring jets surrounding the mid- to upper-

portion of the bubble. The height above the die at
which solidification occurs, also known as the freeze-
line, can be controlled by the cooling air. The defor-
mation of the bubble, as well as changes in velocity
and temperature, are negligible above the freezeline
in most processes. The bubble dimensions are mea-
sured in terms of the blow-up ratio, the draw ratio, and
the thickness reduction. The blow-up ratio (BUR),
which is the ratio of the bubble radius at the freeze-
line to the inner die radius, is typically in the range of
1–4. The draw ratio (DR) is the ratio of the velocity at
the freezeline to that of the average velocity at the die,
and is typically in the range of 10–40. The thickness
reduction (TR) is the ratio of the die annular spacing
to the thickness at the freezeline, and is typically in
the range of 20–200. The bubble is then flattened by a
set of guide rolls and taken up by a set of nip rolls
that form an airtight seal at the upper end of the bub-
ble, thus forming a double-layered collapsed tube or
sheet. Finally, the film is wound onto reels and sold
as ‘‘lay-flat’’ tubing or trimmed at the edges and
wound into two reels of flat film. While the film is
being drawn and blown, it undergoes nonuniform
biaxial deformation. The biaxial extension of the film
is the primary attraction of the film-blowing process,
which increases the strength of the film in two direc-
tions and allows for precise control over the mechani-
cal, shrink, and optical properties of the final product.

There have been numerous previous studies on the
film-blowing process. The first to model the process
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were Pearson and Petrie,1,2 who derived a set of dif-
ferential equations based on the thin-shell approxima-
tion, a force balance, and the deformation of a Newto-
nian fluid. Since the initial model proposed by Pear-
son and Petrie,1,2 various rheological models have
been incorporated in simulations, such as the power-
law model,3 a crystallization model,4 the Maxwell
model,5–8 the Leonov model,8 a viscoplastic-elastic
model,9 the PSM model,10 and a nonisothermal vis-
cosity model.11 An investigation of the stresses of the
film-blowing process with the differential equations
from Pearson and Petrie1,2 was reported by Kurtz,12

who discovered an error in the work by Alaie and
Papanastasiou.10 Han and Park,3 Kanai and White,4

and Minoshima and White13 have reported observa-
tions of flow instabilities in film-blowing experiments.
Ghaneh–Fard et al.14–17 conducted birefringence and
instability film-blowing experiments with high-den-
sity and low-density polyethylenes. A complete set of
experimental data was reported by Gupta18 for the
Styron 666 polystyrene (PS), and by Tas19 for three
different grades of low-density polyethylene (LDPE).

In this work, the film blowing of polymer melts is
examined under isothermal and nonisothermal condi-
tions. The constitutive equation used is the modified
PSM integral constitutive equation with multiple
relaxation times, proposed by Papanastasiou et al.20

This model fits the data well for both shear and exten-

sional viscosities, as well as normal stresses measured
in shear. The effects of temperature are included into
the constitutive equation by means of the Morland–
Lee hypothesis,21 which incorporates the Arrhenius
shift-factor as well as the concept of ‘‘pseudotime.’’
This concept is based on the relative difference
between the observer’s time scale and the material’s
time scale. Both the momentum and energy equations
are solved simultaneously, since they are coupled by
the time-temperature shift factor by which the pseu-
dotime is defined.

The purpose of this work is to compare the current
numerical scheme, which utilizes the finite element
method (FEM) and integral constitutive equations,
with previous simulations that normally utilize the
Runge–Kutta (R-K) method and differential constitu-
tive equations. Further conclusions are drawn with
respect to the Morland–Lee hypothesis21 and the
shifting of relaxation times.22 Finally, simulations are
undertaken for a real film-blowing experiment,19

where the current mathematical modeling of the pro-
cess, as well as previous ones, appear to be inad-
equate in terms of quantitative predictions for the
film radius and film velocity.

MATHEMATICAL MODELLING

Governing equations for isothermal Newtonian
film blowing

The analysis of the stresses and forces within the
blown film follows the classic analysis by Pearson
and Petrie,1,2 where the film is regarded as a thin shell
in tension. The equations are summarized below for
completeness. For highly viscous fluids, viscous
effects dominate the process so that inertia, gravity,
and surface tension effects can be neglected. The
assumption made that the bubble is axisymmetric
allows the problem to be set up using a local coordi-
nate system described by the unit vectors �s, �t, �n,
respectively, in the machine, transverse, and normal
directions from the inside of the sheet (Fig. 2).

Mass conservation demands that for incompressi-
ble materials

r2prhus ¼ rQ ¼ constant (1)

where r is the density, Q is the volumetric flow rate, us
is the machine-direction velocity component, h is the
local film thickness, and r is the local bubble radius.
Taking the derivative of eq. (1) with respect to the arc
length normal�s, as shown in Figure 2, results in

1

us

dus
ds

¼ � 1

h

dh

ds
� 1

r

dr

ds
(2)

The left-hand side of eq. (2) is the rate of machine-
direction stretching along the film, and the two terms

Figure 1 Sketch of the film-blowing process. A visco-
elastic fluid is extruded through an annular die and is
taken up at the nip rolls. Biaxial extension is effected by
the drawing force at the nip rolls and by the blow-up pres-
sure DP.
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on the right-hand side are, respectively, the negatives
of the stretch rates in the thickness direction, �n, and
the transverse direction, �t. Normal force equilibrium
occurs when

DP
h

¼ tss
Rs

þ ttt
Rt

(3)

where tss and ttt are the cross section averaged
machine-direction and transverse stresses, Rs and Rt

are the principal curvatures in the two directions�s and
�t, and DP is the internal pressure measured relative to
the external (atmospheric) one. By means of simple
differential geometry principles, it can be shown that

Rs ¼ �
1þ dr

dz

8: 9;2
� �3=2

d2r
dz2

(4)

Rt ¼ r 1þ dr

dz

8>: 9>;2
" #1=2

(5)

A force balance in the direction of the axis of sym-
metry, z, results in,

F ¼ 2prhtss cos yþ pDP r2L � r2
� �

(6)

where F is the applied tension at distance z ¼ L, and
rL is the final bubble radius at distance z ¼ L. Equa-
tions (1) and (6) are made dimensionless by means
of the following dimensionless variables

r� ¼ r

ro
; z� ¼ z

ro
; u� ¼ u

uo
; t� ¼ t

Zouo=ro
(7)

where ro is the inner radius of the annulus, uo is the
average velocity of the fluid within the die, and Zo is

the zero-shear-rate viscosity of the fluid. The result-
ing dimensionless equations, through the use of the
dimensionless variables in eq. (7) and by combining
eqs. (1)–(6) with asterisks suppressed hereafter, are

Aþ r2B
� �d2r

dz2
þ 2rB 1þ dr

dz

8>: 9>;2
" #

� ttt
ur

1þ dr

dz

8>: 9>;2
" #1=2

¼ 0 ð8Þ

tss � u Aþ r2B
� �

1þ dr

dz

8>: 9>;2
" #1=2

¼ 0 (9)

with the two dimensionless constants defined as

A ¼ Fro
ZoQ

� B
rL
ro

8>: 9>;2

(10)

B ¼ pDPr3o
ZoQ

(11)

The Newtonian stresses can be easily deduced from
Newtonian deformation theory and are given as

tss ¼ 2u cos y
1

r

dr

dz

� �
(12)

ttt ¼ 2u cos y
1

r

dr

dz
� 1

h

dh

dz

� �
(13)

Eqs. (8) through (13), when combined, give the well-
known governing equations for film blowing

2r2 Aþ r2B
� �d2r

dz2
¼ 6

dr

dz
þ r 1þ dr

dz

8>: 9>;2
" #

A� 3r2B
� �

(14)

dh

dz
¼ �h

"
dr
dz

2r
þ
h
1þ dr

dz

8: 9;2i
Aþ r2B
� �

4

#
(15)

These equations are solved here by the finite ele-
ment method to obtain initial estimates for the visco-
elastic case, and also to validate the viscoelastic consti-
tutive equation when reduced to its Newtonian limit.

Governing equations for nonisothermal
viscoelastic film blowing

To proceed with the analysis of a viscoelastic fluid,
the stresses tss and ttt in eqs. (8) and (9) must be
expressed in terms of the velocity by means of a con-
stitutive equation. The one chosen here is the PSM in-
tegral constitutive equation with multiple relaxation
times, proposed by Papanastasiou et al.20 and further

Figure 2 Film curvature definition in terms of the moving
coordinate system with unit vectors �s, �t, and �n in the
machine direction, transverse (hoop) direction, and normal
direction, respectively. Note the reference point is located
on the inside surface of the bubble.
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modified by Luo and Tanner.23 This is written as

t ¼ 1

1� y

Z t

�1

XN
k¼1

ak
lk

exp � t� t0

lk

8>: 9>;
� ak
ðak � 3Þ þ bkIC�1 þ 1� bkð ÞIC

� C�1
t ðt0Þ� þ yCtðt0ÞÞdt0 ð16Þ

where N is the number of relaxation modes, lk and ak
are the relaxation times and relaxation moduli at a
reference temperature To, ak, and bk are material con-
stants, and IC,IC�1 are the first invariants of the
Cauchy–Green tensor Ct and its inverse C�1

t , the Fin-
ger strain tensor. The material constant y is given by

N2

N1
¼ y

1� y
(17)

where N1 and N2 are the first and second normal
stress differences, respectively. Note that y is not zero
for polymer melts exhibiting a second normal stress
difference, such as low-density polyethylene melts.
Its usual range is between �0.1 and �0.2.21 In the
present work, a value of y ¼ �1/9 has been used.

The above eq. (16) reduces to the well-known
upper-convected Maxwell (UCM) model in the case
of a single relaxation time l and its corresponding
relaxation modulus a, a large value of a (say a
¼ 10,000), a value for b between 0 and 1, and y ¼ 0.
The UCM model is routinely used for validation pur-
poses of a viscoelastic scheme, and as such it will be
dealt with here as well.

The material under study is the L8 Stamylan low-
density polyethylene (LDPE) used by Tas.19 Nonlin-
ear regression was performed for this material using
the above constitutive equation, eq. (16), to find the
spectrum of relaxation times lk, and coefficients, ak, as
well as the material parameters a (shear-thinning pa-
rameter) and b (extensional parameter). Figure 3 dis-
plays the dynamic moduli G0 and G,‘‘ while Figure 4
displays the shear viscosity, ZS, uniaxial extensional
viscosity, ZE, biaxial extensional viscosity, ZB, and the
first normal stress difference, N1, together with the
model predictions. The values of the parameters in
eq. (16) for LDPE are given in Table I.

The viscoelasticity of the material under flowing
conditions can be represented by the dimensionless
variable known as the Weissenberg number, Ws,
given as

Figure 3 Predictions (solid lines) by the PSM model of
the experimental data (symbols) for the storage and loss
modulus for the L8 Stamylan low-density polyethylene
(LDPE) used by Tas.19 Material parameters are given in
Table I.

Figure 4 Predictions (solid lines) by the PSM model of
the experimental data (symbols) for the steady shear, uni-
axial, and biaxial viscosities as well as the first normal
stress difference for the L8 Stamylan low-density polyeth-
ylene (LDPE) used by Tas.19 Material parameters are given
in Table I.

TABLE I
Material Parameters Used in eq. (16) for the L8 Stamylan
Low-Density Polyethylene (LDPE) at 1908C Used in the
Experiments by Tas19 (a 5 12.82, b 5 0.058, u 5 �0.111,

ho 5 2365.0 Pa s)

k lk (s) ak (Pa)

1 4.28 � 10�5 2.17 � 105

2 2.07 � 10�4 9.18 � 104

3 1.34 � 10�3 5.75 � 104

4 9.02 � 10�3 2.43 � 104

5 5.69 � 10�2 8.91 � 103

6 3.44 � 10�1 2.34 � 103

7 1.82 321
8 9.94 12.4
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Ws ¼ uo
ro

P
ak l

2
kP

ak lk
¼ uo

ro
l (18)

where �l is the average relaxation time. For the iso-
thermal case, the transit times along the film are
given, in terms of the velocity and distance traveled,
by

t� t0 ¼
Z s

s0

ds00

uðs00Þ (19)

with

ds00

dz00
¼ 1

cos y
¼ 1þ dr

dz

8>: 9>;2
" #1=2

(20)

where double prime (00) denotes a position between s
and s0. The traveling times are used within the modi-
fied PSM equation, where a time t0 < 0 indicates that
the history of the particle is within the annulus (pre-
history), and a time 0 < t0 < t indicates that history of
the particle is within the blown film (history). The
stress of the fluid particle, t(t0), which at present time
t, occupies a position s, is a function of the Finger
strain tensor C�1

t , to which the particle had been
exposed in moving from far away to its present posi-
tion s, along the streamline 1 (<s0 <s00). The Finger
strain tensor is defined differently, based on whether
the history of the particle is within the annulus or
within the blown film. The two definitions for the Fin-
ger strain tensor are:

i. The Finger strain tensor, C�1
t , between the present

location s of velocity u(s) and past locations in the
same extensional (biaxial) field of velocity u(s0):

C�1
t ðt0Þ ¼

uðsÞ
uðs0Þ
h i2

0 0

0 uðs0Þrðs0Þ
uðsÞrðsÞ

h i2
0

0 0 rðsÞ
rðs0Þ
h i2

2
66664

3
77775 (21)

ii. The Finger strain tensor, C�1
t , between the present

location s of velocity u(s) and past locations in the
extensional (planar) prehistory field of velocity u(s0):

C�1
t ðt0Þ ¼

uðsÞ
uðs0Þ
h i2

0 0

0 uðs0Þð1Þ
uðsÞrðsÞ
h i2

0

0 0 rðsÞ
ð1Þ

h i2

2
66664

3
77775 (22)

since r(s0) ¼ 1 within the die, in dimensionless form.
In the nonisothermal case, it is necessary to derive

a nonisothermal constitutive equation from the iso-

thermal one. This is done by applying the time-tem-
perature shifting concept as explained by Luo and
Tanner.22 This concept is based on the relative differ-
ence between the observer’s time scale and the mate-
rial’s time scale. Using x for the time measured by the
material’s own internal clock, the following relation
holds between x and the observer’s time t,

dx ¼ dt

aTðTÞ (23)

where the denominator is the time-shifting factor.21

The above relationship expresses the Morland–Lee
hypothesis21 in a differential form and can be used to
obtain the following integral relation between the par-
ticle’s elapsed time and the observing period.

x ¼
Z t

0

a�1
T ðTðt0ÞÞdt0 (24)

Thus as a fluid particle is tracked along a stream-
line segment Dsi, the particle’s time corresponding to
the residence time Dt0 is given by

Dx0 ¼ Dsi
uiaTðTiÞ (25)

In Figure 5 the path of the particle is sketched, and
the relevant times and lengths are presented. The
above eq. (23) can be used to obtain the nonisother-
mal form of the modified PSM equation by replacing
the observer’s time t in eq. (16) with the particle’s
time x given by eq. (23). The resulting version of the
constitutive equation becomes

Figure 5 In steady-state flows of viscoelastic liquids, the
present stress state of a fluid particle is a function of the
particle’s stress history (past states). For the nonisothermal
case, the material’s internal clock is not the same as the
observer’s clock according to the Morland–Lee hypothe-
sis.21
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t ¼ 1

1� y

Z xðtÞ

�1

XN
k¼1

ak
lk

exp � x� x0

lk

8>>: 9>>;
� ak
ðak � 3Þ þ bkIC�1 þ 1� bkð ÞIC
�
�
C�1

tðxÞ
�
t0
�
x0
��þ yCtðxÞ

�
t0
�
x0
���

dx0 ð26Þ

The time-temperature shifting factor aT is obtained
from the Arrhenius equation and is given as

aT ¼ exp
E

R

1

T
� 1

Tref

8>: 9>;� �
(27)

where E is the activation energy, R is the ideal gas
constant, and Tref is the reference temperature for
the material.

Another method can be applied to derive the noni-
sothermal constitutive equation from the isothermal
one. This method is based on the time-temperature
superposition principle and consists of shifting the
relaxation times from the temperature history within
the material’s time scale.22 The equation used to shift
the relaxation times in the material’s history is given
as

lðT0ðz0ÞÞ ¼ lðTrefÞaTðT0ðz0ÞÞ (28)

Both methods are used to compare the relative pre-
dictive capabilities.

By assuming a uniform temperature over the cross
section of the film and negligible axial heat conduc-
tion and viscous dissipation, the dimensionless energy
equation for temperature simplifies to

dT

dz
¼ �r g1

�
T � Ta

�þ g2
�
T4 � T4

a

�� �
(29)

where

g1 ¼
2pr2oH

rcPQo cos y
(30)

and

g2 ¼
2pr2oeKT

3
o

rcPQo cos y
(31)

are dimensionless numbers with Ta, the dimension-
less air temperature; cP, the specific heat capacity; H,
the heat transfer coefficient; e, the emissivity; K, the
Boltzmann radiation constant; and Qo, the volumetric
flow rate in the annular die. The density, r, and the
specific heat capacity, cP, change along the blown film

distance, since these are functions of temperature. For
the heat capacity of the polymer, the following
expression, which was suggested by Haw,24 was used

cPðTÞ ¼ coP
k1 þ k2T

k1 þ k2To

8>: 9>; (32)

where cop is the heat capacity at the reference tempera-
ture To, and k1 and k2 are empirical constants. The
density r is given by

r ¼ ro
1þ crðT � ToÞ (33)

where ro is the density at temperature To, and cr is a
constant of expansion. The parameters used in this
study for the nonisothermal simulations of the L8 Sta-
mylan LDPE are given in Table II.

Special mention needs to be made for the heat
transfer coefficient H, which is difficult to determine
and there might be significant local variations, which
may affect the rheology and the final predictions, as
recent works25,26 have made clear.

The prehistory kinematics needed in eq. (26) is
inserted with the extensional prehistory given by the
kinematics

u ¼ expcz (34)

which originates from the Newtonian solution for
planar elongation within an annular die (same solu-
tion as that for uniaxial elongation within a tube).
This method is similar to the one used by Chen and
Papanastasiou,27 who employed uniaxial prehistory
kinematics for their study of the fiber-spinning pro-
cess. The parameter c is one of the unknowns to be
determined simultaneously with the solution by
requiring continuous stresses at the die exit.

TABLE II
Material Parameters Used in the Nonisothermal
Simulations for the L8 Stamylan LDPE at 1908C

Given by Tas19

Property (units) Value

Density, r (g cm�3) 0.92
Activation energy, Eo (J mol�1) 57,500
Reference temperature, Tref (8C, K) 190 (463)
Specific heat, CP,o (erg g�1 K�1) 2.302 � 107

Zero-shear-rate viscosity, Zo (Pas) 2365.0
Ideal gas constant, R (J mol�1 K�1) 8.314
Emissivity, e 0.65
Stefan-Boltzmann constant,

K (erg s�1 cm�2 K4) 5.67 � 10�5

Empirical constants, k1 and
k2 (K

�1) in eq. (32) 1.454 and 0.000271
Coefficient of expansion,

cr in eq. (33) 0.00069
Heat transfer coefficient,

H (erg cm�2 K�1)
40,000
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Boundary conditions and specification of the
freezeline position

The governing equations presented earlier, which
describe the film-blowing process, are subjected to
the following boundary conditions:

at z ¼ 0;
r ¼ ro
u ¼ uo
T ¼ To

8<
: at z ¼ L

ro
;

	
dr

dz
¼ 0 (35)

It should be noted that the freezeline position is
fixed a priori, consistent with previous studies.2,7,8,10

When simulating experimental data, the freezeline
position is chosen by inspecting the bubble radius
and film velocity, and choosing a position where
these variables become constant, i.e., the freezeline.
Other nonisothermal simulations11 have made predic-
tions past the freezeline by choosing a suitable solidi-
fication temperature, where once the solidification
temperature is reached, the viscosity is made infinite
(þ1). This causes the variables (bubble radius, veloc-
ity, temperature) to become constant. This method
was not chosen here since it adds another adjustable
parameter (the freezing temperature, Tf) to the nu-
merical scheme. It is more appropriate to choose the
freezeline position a priori, consistent with experimen-
tal data, rather than introducing another unknown
variable (the freezeline position, L) along with
another adjustable parameter (Tf).

The governing equations presented earlier describe
the film-blowing process in the liquid (melt) region.
Near the freezeline, the simulated bubble radius
becomes constant because of the second imposed
boundary condition (at z ¼ L/r0, dr/dz ¼ 0), thus
appearing to solidify as in the experiments. However,
the velocity and temperature do not become constant
near the freezeline, since imposing a similar bound-
ary condition at the freezeline (as in the case for the
radius) would overspecify the system of equations.
Again, the governing equations presented earlier for
the film-blowing process, are only valid in the liquid
(melt) region.

METHOD OF SOLUTION

The unknown surface velocity u, the film profile r,
and the temperature T, along the film, are approxi-
mated with quadratic finite element shape functions,
fi:

uðzÞ ¼
X3
i¼1

uif
iðzÞ; i ¼ 1; 2; . . . ;NN (36)

rðzÞ ¼
X3
i¼1

rif
iðzÞ; i ¼ 1; 2; . . . ;NN (37)

TðzÞ ¼
X3
i¼1

Tif
iðzÞ; i ¼ 1; 2; . . . ;NN (38)

where NN is the number of nodes. The differential
equations pertaining to each variable [eqs. (8), (9),
and (29)] are then weighted with the same shape
functions as those used for each variable, and the
resulting Galerkin weighted residuals with the
appropriate boundary conditions are

R1
r ¼ 0; (39)

Ri
r ¼

Z 1

0

� dr

dz

dfi

dz
þ 1

ðAþ r2BÞ 2rB 1þ dr

dz

8>: 9>;2
" #8>>>>:

"(

� ttt
ru

1þ dr

dz

8>: 9>;2
" #1=2

9>>>>>;
3
5fi

9=
;dz ¼ 0;

i¼ 2; . . . ;NN; ð40Þ

R1
u ¼ 0; (41)

Ri
u ¼

Z 1

0

tss � ðAþ r2BÞ 1þ dr

dz

8>: 9>;2
" #1=2

8<
:

9=
;dz ¼ 0;

i ¼ 2; . . . ;NN; ð42Þ

R1
T ¼ 0; (43)

Ri
T ¼ ½Tfi�z¼1

z¼0

�
Z 1

0

T
dfi

dz
� r½g1ðT � TaÞ þ g2ðT4 � T4

a Þ�fi

( )
dz

¼ 0; i ¼ 2; . . . ;NN; ð44Þ

All boundary residuals at the inlet are set to zero
to impose the inlet radius, velocity and temperature.
The stresses in the residual equations are replaced
by the stresses defined by the modified PSM consti-
tutive equation. The upstream memory resulting
from the integral constitutive equation is computed
via a 15-point Gauss–Laguerre quadrature suited for
exponentially fading functions, as done in previous
simulations for integral models,23 while the Galerkin
residuals are computed with Gauss–Legendre quad-
rature. The residuals, which are required to vanish,
result in a system of 3(NN) nonlinear equations with
the variables, q ¼ {r1, r2, : : :, rNN, u1, u2, : : :, uNN, T1,
T2, : : :, TNN}

T, as the unknowns. The equations are
solved by the Newton–Raphson iterative scheme,
i.e.,

½J�fqðnþ1Þ � qðnÞg ¼ �fRfqðnÞÞg (45)

where R is the vector of the Galerkin weighted
residuals and [J] is the Jacobian matrix of the deriva-
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tives of the residuals with respect to the variable
nodal values {q(n)} for the nth iteration. The tensor
notation for the Jacobian derivative is

Jij ¼ qRi

quj
(46)

which is calculated numerically according to the def-
inition of the derivative.

The method used for viscoelastic computations fol-
lows that of Barakos and Mitsoulis.28 To that effect a
finite-element program (F-BLOW) was written for
simulations of the film-blowing process.29 The New-
tonian solution is first obtained with the viscoelastic
equations at the limit of a small flow rate. The flow
rate is then gradually increased to the required flow
rate (thus increasing the level of viscoelasticity) using
continuation of the primary variables. A converged
solution was considered to have been reached for the
nonlinear set of equations when the root-mean-
square-of-the-error was below 10�4. The iterative pro-
cess is summarized in Table III. More details about
the numerical aspects can be found in a thesis.29

RESULTS AND DISCUSSION

Newtonian case

To establish confidence in the numerical scheme
implemented in this study, the solution of the Newto-
nian problem [eqs. (14) and (15)] was first solved with
a fourth-order Runge–Kutta (R-K) procedure. At a
very small Weissenberg number (Ws ¼ 0.001), the
viscoelastic case reduces to the Newtonian one.
Therefore, the viscoelastic case is solved at a very
small Weissenberg number with the FEM, which can
then be evaluated against the Newtonian solution
solved by R-K. The dimensionless force was chosen at
f ¼ 2.9, dimensionless pressure at B ¼ 0.2, with a
dimensionless length at L/ro ¼ 5.0, where the Newto-
nian solution under these conditions is well-docu-
mented.2,8 Figure 6 shows the results of solving the
viscoelastic solution at the limit of very small relaxa-
tion time approaching Newtonian behavior against
the Newtonian solution at identical conditions. The

viscoelastic solution gave identical radial and velocity
profiles to that of the Newtonian solution, which veri-
fies that our numerical scheme is valid at small Weis-
senberg numbers.

It was also found during the testing of the Newto-
nian solution against the viscoelastic case that an
error is present in the study of Alaie and Papanasta-
siou.10 In validating their numerical scheme against
the Newtonian solution, they used a dimensionless
force of f ¼ 2.3, dimensionless pressure of B ¼ 0.2,
and a dimensionless length of L/ro ¼ 7.0. Under these
conditions, the final dimensionless radius for the
Newtonian solution is rL/ro ¼ 3.015 and the final
dimensionless velocity is uL/uo ¼ 6.593. Alaie and
Papanastasiou10 report that their viscoelastic solution
at Ws ¼ 0.001 (Fig. 8 in Ref. 10), which gave a final
dimensionless radius of rL/ro ¼ 3.12, and a final
dimensionless velocity of uL/uo ¼ 11.8, matched the
Newtonian solution. This is a false claim and their nu-
merical scheme validation is incorrect. Hence, their
results for the viscoelastic case are indeed question-
able. It should also be pointed out that their numeri-
cal scheme was not tested against any upper-con-
vected Maxwell (UCM) model cases.

Maxwell case

To proceed with this analysis, the numerical scheme
used in this study must also be valid at higher Weis-
senberg numbers. The upper-convected Maxwell

TABLE III
Convergence Process for the Film-Blowing Program
F-BLOW27 for the Flow of the L8 Stamylan LDPE19

No. of
elements

No. of
nodes

No. of
primary
variables

No. of
iterations

CPU
(s/Iter)

Total
CPU

time (s)

46 93 3 6 48.2 291 (403)

CPU time is given for calculations on a workstation
(IBM-RISC 6000/590). Numbers in parenthesis in the last
column correspond to wall-clock time in seconds.

Figure 6 Predictions of the viscoelastic simulation (solid
line) in the limiting case of low Weissenberg number (Ws
¼ 0.001) compared with the Newtonian solution (open
symbols). The dimensionless force is f ¼ 2.9, the dimen-
sionless pressure is B ¼ 0.2, and the dimensionless length
L/ro ¼ 5.0.
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(UCM) model case is therefore analyzed at identical
conditions to those of Luo and Tanner,8 who per-
formed a series of simulations of varying Weissen-
berg numbers at a dimensionless force of f ¼ 2.9,
dimensionless pressure of B ¼ 0.2, and a length of L/
ro ¼ 5.0 (identical to the Newtonian case). Figure 7
shows the results of this study for the UCM model
against those of Luo and Tanner8 at different Weis-
senberg numbers (Ws ¼ 0.1, 0.15, 0.2, 0.25). The simu-
lation results gave identical radial profiles reported
by Luo and Tanner8 at every Weissenberg number.
This comparison verifies that our numerical scheme is
valid for viscoelastic cases. Also shown in Figure 7 is
the effect of increasing the Weissenberg number on
the final radius, rL, at z ¼ L. As the Weissenberg num-
ber increases, the more solid (plastic) the material
becomes and hence resists deformation, explaining
the reduced bubble radius. Also shown is the simula-
tion result for the Maxwell model at a higher Weis-
senberg number (Ws ¼ 0.272) than previously re-
ported by Luo and Tanner,8 which was the limit for
this study. The limiting case for the Maxwell model at
even higher Weissenberg numbers would result in a
completely flat radial and velocity profile (drawing of
a solid tube).

It is interesting to note that two very dissimilar
approaches to solving the film-blowing governing
equations with the UCM model gave identical results.
Luo and Tanner8 used a fourth-order Runge-Kutta
(R-K) procedure with the UCM differential constitu-
tive equation to solve the film-blowing problem,
where prehistory effects were handled by the con-
vected derivative. This study used the finite element
method (FEM) with the integral equivalent of the

UCM model, where prehistory effects were handled
with extensional kinematics, and the integral constitu-
tive equation was solved with a 15-point Gauss–
Laguerre quadrature.

Shear versus extensional prehistory

Before continuing with the analysis and simulation of
reported film-blowing experiments, the difference
between extensional prehistory and shear prehistory
(the latter described in Ref. 10) will be analyzed. The
study performed by Alaie and Papanastasiou10 used
a method very similar to the one used here, i.e.,
implementation of the PSM integral constitutive equa-
tion with the same film-blowing governing equations.
The major difference is that this study uses an exten-
sional prehistory described by eq. (34), while Alaie
and Papanastasiou10 used a shear prehistory. Initially,
this study was also carried out with a shear prehis-
tory. However, after numerous simulations with the
Newtonian and upper-convected Maxwell (UCM)
models, it was discovered that shear prehistory gave
spurious stresses and sometimes incorrect radius and
velocity profiles. Using a shear prehistory within the
die with a sudden change to extensional history out-
side of the die, results in a singularity point in the
quasi-one-dimensional analysis used in this study.
This causes numerical instabilities in the stress calcu-
lations. To visualize this, the results of the UCM
model at the same operating conditions as above, at a
Weissenberg number of Ws ¼ 0.25, are given for the

Figure 8 Predictions of the machine and hoop stresses of
the viscoelastic simulation for the upper-convected Max-
well (UCM) limiting case at Ws ¼ 0.25 using a shear pre-
history.

Figure 7 Predictions of the viscoelastic simulation (solid
line) for the upper-convected Maxwell (UCM) limiting
case compared with the UCM simulations by Luo and
Tanner8 (dashed line).
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two cases, i.e., with shear prehistory and extensional
prehistory. Figures 8 and 9 show the dimensionless
stresses, tss* (machine-direction stress) and ttt* (hoop-
direction stress), for the shear prehistory and exten-

sional prehistory, respectively. It can be seen in Fig-
ure 8 that a shear prehistory at higher Weissenberg
numbers causes numerous oscillations in the calcula-
tion of the stresses, tss* and ttt*. Also, it can be seen in
Figure 9 that, at the same conditions, extensional pre-
history results in a smooth stress profile. The smooth
profile is also due to the condition, with extensional
prehistory, that the stress be continuous inside and
outside of the die. It is also interesting to note that the
shear prehistory and extensional prehistory, although
different in nature, give relatively the same magni-
tude of values for the stresses. This was also observed
by Chen and Papanastasiou27 in studying the two
prehistory formulations for fiber spinning. The oscil-
latory behavior caused by the shear prehistory is sim-
ply a numerical issue for the current numerical
scheme. Physically, the deformation within the die is
mostly due to shear, and a shear prehistory experi-
enced by the material would dominate.

Nonisothermal Maxwell case

To perform the nonisothermal simulations of reported
experiments, a method for deriving the nonisother-
mal constitutive equation from the isothermal one
must be chosen. The method of choice, reported by
previous studies28,30 when using integral constitutive
equations, is the Morland–Lee hypothesis,21 which
applies time-temperature shifting by incorporating a

Figure 9 Predictions of the machine and hoop stresses of
the viscoelastic simulation for the upper-convected Max-
well (UCM) limiting case at Ws ¼ 0.25 using an exten-
sional prehistory.

TABLE IV
Material Parameters Used in the Nonisothermal

Simulations of the Maxwell Test Cases for the Morland–
Lee Hypothesis vs. the Shifting of Relaxation Times

Property (units) Value

Density, r (g cm�3) 1.0
Activation energy, Eo (J mol�1) 70,000
Reference temperature, Tref (8C, K) 185 (458)
Specific heat, CP,o (erg g�1 K�1) 2.00 � 107

Relaxation time, l (s) 0.3
Zero-shear-rate viscosity, Zo (Pa s) 90,000
Ideal gas constant, R (J mol�1 K�1) 8.314
Emissivity, e 0.5
Stefan-Boltzmann constant
(erg s�1 cm�2 K4) 5.67 � 10�5

Empirical constants, k1 and
k2 (K

�1) in eq. (32) 1.454 and 0.000271
Coefficient of expansion,
cr in eq. (33) 0.00069

Heat transfer coefficient,
H (erg cm�2 K�1) 6000.0

Bubble radius at die, ri (cm) 1.0
Melt velocity at die exit, uo (cm s�1) 1.0
Film thickness at die, ho (cm) 0.1
Dimensionless length, L/ro 5.0
Inlet temperature, To (8C, K) 185 (458)
Dimensionless force, f 2.9
Dimensionless pressure, B 0.2
Air temperature, Tair (8C, K) 25 (298)

Figure 10 Predictions of the radius variable for the non-
isothermal UCM viscoelastic simulations using the Mor-
land–Lee hypothesis21 and shifting the relaxation times
with an appropriate shift factor.22 Simulation conditions
are given in Table IV.
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pseudotime measured by the material’s own internal
clock. However, the opportunity is offered here to
compare the Morland–Lee hypothesis21 with the

method of shifting the relaxation times [eq. (28)] as
methods to evaluate nonisothermal stresses. Only the
upper-convected Maxwell (UCM) model will be con-
sidered in this comparison. The operating conditions
for this test case are given in Table IV. Figure 10
shows the radial profiles for both methods. There is
no major difference in the radial profiles for both
methods, except that the method of shifting the relax-
ation times produces a final dimensionless radius (rL/
ro) somewhat lower than the Morland–Lee hypothe-
sis. Figure 11 shows the velocity profiles for both
methods, and again no major difference is observed.
Finally, Figure 12 shows the temperature profile for
both methods, and displays no major differences.
Therefore, the method of shifting the relaxation times
used by Luo and Tanner22 does not differ signifi-
cantly in results compared with applying the Mor-
land–Lee hypothesis.21 Both methods are capable of
handling nonisothermal conditions when using inte-
gral constitutive equations. However, the Morland–
Lee hypothesis has been chosen in this study because
of its ease of implementation in the current numerical
scheme, its speed and accuracy. This happens because
it allows the use of the Gauss–Laguerre quadrature,
which is well-suited for exponentially fading func-
tions and requires only 15 positions in the particle’s
deformation history for the computation of the
stresses given by the integral constitutive equation.

Figure 11 Predictions of the velocity variable for the non-
isothermal UCM viscoelastic simulations using the Mor-
land–Lee hypothesis21 and shifting the relaxation times
with an appropriate shift factor.22 Simulation conditions
are given in Table IV.

Figure 12 Predictions of the temperature variable for the
nonisothermal UCM viscoelastic simulations using the
Morland–Lee hypothesis21 and shifting the relaxation times
with an appropriate shift factor.22 Simulation conditions
are given in Table IV.

Figure 13 Comparison of current simulations with those
of Sidiropoulos et al.11 and experiments conducted by
Tas19 with the L8 Stamylan low-density polyethylene
(LDPE) for the radius variable. Operating conditions are
given in Table V with nonisothermal conditions given in
Table II.
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Nonisothermal PSM case—Comparison
with experiments

Experiments by Tas19

The comparison of numerical simulations to experi-
ments performed by Tas19 for the L8 Stamylan LDPE
is presented in Figures 13–15 for the radius, velocity,
and temperature, respectively. The operating condi-
tions used for the simulations are taken from the
reported experiments and given in Table V. The rheo-
logical characterization used for the simulations is
given in Table I.

It can be seen from Figure 13 for Tas’s19 experi-
ments nos. 20, 23, and 29 that the simulations have
difficulty in predicting the correct bubble shape. The
reason may be due to external forces not taken into
account in the film-blowing governing equations.
Such forces are aerodynamic forces coming from the
turbulent jet of air used in cooling the bubble surface,
air drag, gravity, and inertia. Surface tension can be
assumed to be negligible in most polymer melt opera-
tions, and so are gravity and inertia.2 Also included
in the figures are the predictions from Sidiropoulos
et al.,11 who used a nonisothermal purely viscous
model. Figure 13 shows that the results from Sidiro-
poulos et al.11 and the current results do not differ
much except for experiment no. 20. The reason for
this difference in experiment no. 20 is the choice of
the position of the freezeline. Sidiropoulos et al.11

chose a freezeline closer to the die than the current
simulation. Another reason for the discrepancy
between simulation and experiments is the problem
of multiple solutions, which results when using the
current film-blowing model. Other researchers5,7,8,31,32

have also encountered difficulties in using the current
thin-shell model, including multiplicities and instabil-
ities.

The current method used to predict the bubble
shape is to manually change the dimensionless pres-
sure, B and the dimensionless force, f, until the final
radius, rL, and the final velocity, uL, in the simulations
matches that of the experiments. Shown in Table VI
are the results from the simulations for the dimen-
sionless force and pressure compared with the experi-
ments. The simulations under-predict the experi-

Figure 14 Comparison of current simulations with those
of Sidiropoulos et al.11 and experiments conducted by
Tas19 with the L8 Stamylan low-density polyethylene
(LDPE) for the velocity variable. Operating conditions are
given in Table V with nonisothermal conditions given in
Table II.

Figure 15 Comparison of current simulations with those
of Sidiropoulos et al.11 and experiments conducted by
Tas19 with the L8 Stamylan low-density polyethylene
(LDPE) for the temperature variable. Operating conditions
are given in Table V with nonisothermal conditions given
in Table II.

TABLE V
Film-Blowing Operating Conditions for Simulation
Based on Experiments with L8 Stamylan LDPE

Conducted by Tas19

Property (units) Value

Bubble radius at die, ri (cm) 1.78
Melt velocity at die exit, uo (cm s�1) 0.4198
Film thickness at die, ho (cm) 0.22
Dimensionless length, L/ro 10.0
Inlet temperature, To (8C, K) 145 (418)
Air temperature, Tair (8C, K) 25 (298
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ments for the force and over-predict the experiments
for the pressure for all three cases. However, the
viscoelastic simulations predict forces closer to the
experiments than that of Sidiropoulos et al.11 with the
nonisothermal purely viscous simulations. Once
more, this may be due to the inability of the model to
capture all of the forces exerted on the blown film.
The model is closer in predicting the force and pres-
sure at higher BUR conditions. Figure 14 displays the
comparison between simulations and experiments for
the velocity variable. Also included in Figure 14 are
the simulations of Sidiropoulos et al.11 Again, there is
a large discrepancy for the velocity profile of the cur-
rent simulations and those of Sidiropoulos et al.11 for
experiment no. 20. As stated earlier, this is due to the
choice of position of the freezeline.

Figure 15 shows the simulated and experimental
temperature profiles for all three cases. The simulated
temperature profiles agree well with the experimental
temperature profiles for all three cases. However,
from Table II, the heat transfer coefficient required in
the simulations to obtain the proper temperature pro-
file is 10 times that used in other reported simula-
tions.7,8 It is possible that Tas19 used higher velocities
of cooling air to solidify the bubble. The principal rea-
son for the discrepancy is the inability of the model,
specifically eq. (29), to take into effect the convection
caused by turbulent air surrounding the bubble. A
better relation is required to relate the heat transfer
coefficient, H, in eq. (30), which takes into account the
velocity of air surrounding the bubble. Such relations
exist for cross-flow air with cylinders and plates but
do not exist for complicated situations such as this
one (cocurrent turbulent air with changing bubble ra-
dius).

In an attempt to discover why the simulations of
Sidiropoulos et al.11 gave slightly better values for the
film radius (r) and the film velocity (u), the uniaxial
viscosity (ZE) and the biaxial viscosity (ZB) were cal-
culated as a function of distance from the die. Figure
16 shows both viscosities for the K-BKZ integral con-
stitutive model, eq. (16), for the L8 Stamylan LDPE, as
well as the Newtonian model with the same zero-
shear-rate viscosity. Also shown in Figure 16 is the
magnitude of the extensional-rate tensor, defined as:
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Eqs. (47) and (48) were used to find the extensional
rates along the film needed for the K-BKZ model, eq.
(16). The temperature dependence of the viscosities
from the K-BKZ model and the Newtonian model
was formulated as

ZðTÞ ¼ ZðTrefÞaT (49)

where the shift factor aT is defined as in eq. (27). Fig-
ure 16 shows that the Newtonian model gives higher

TABLE VI
Comparison Between Experimental and Predicted Inflation Pressures and Tension

Forces for the Experiments with L8 Stamylan LDPE Conducted by Tas19 and
Simulations Conducted by Sidiropoulos et al.11

Run
no.

Measured
force (N)
[Ref. 19]

Predicted
force (N)

Measured
pressure (Pa)

[Ref. 19]

Predicted
pressure (Pa)

This work Ref. 11 This work Ref. 11

20 3.80 1.60 1.05 78 198 170
23 4.30 1.86 1.20 85 186 150
29 3.50 2.13 1.30 70 168 120

Figure 16 Uniaxial viscosity (ZE) and biaxial viscosity
(ZB) as a function of distance from the die for the L8 Sta-
mylan low-density polyethylene (LDPE), using the K-BKZ
model, eq. (16), and the Newtonian model. The material
parameters used for the K-BKZ model are given in Table I.
The Newtonian viscosity was derived from the zero-shear-
rate viscosity of the L8 Stamylan LDPE.
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predictions for the biaxial viscosity (encountered dur-
ing the film-blowing process) than that of the K-BKZ
model. This might explain why the predictions for the
radius and velocity were slightly better. It may also
explain why the velocity variable for the simulations
of Sidiropoulos et al.11 shows a plateau near the
freezeline (the current numerical scheme in terms of
the velocity variable does not show a plateau), which
parallels the film-blowing process in reality.

Experiments by Gupta18

Previous simulation attempts7,8,10 have used for com-
parison the experimental data by Gupta,18 and in par-
ticular experiment no. 20 for the Styron 666 PS. The
first two simulation attempts have used the noniso-
thermal UCM model with a single relaxation time
and a temperature-dependent viscosity, and showed
that agreement could be obtained with the experi-
ments only by choosing appropriately some con-
stants, that do not necessarily reflect the proper
experimental conditions. The attempt by Alaie and
Papanastasiou10 with the current PSM model showed
a surprisingly good agreement with the experiments.

In our efforts to simulate Gupta’s results we also
used the same rheological characterization as done by
Alaie and Papanastasiou.10 It should be noted that
the final Weissenberg number for this simulation (Ws
¼ 1.82) indicates a highly viscoelastic flow. Conse-
quently, this high viscoelastic flow was unattainable
in this study, and results were only obtained up to a
Weissenberg number of Ws ¼ 0.90 (i.e., the die veloc-
ity, uo, in eq. (18) was not reached in simulations
while increasing the viscoelasticity of the material).
This results in the material not being as viscoelastic in
the simulations as it is in the experiments.

Alaie and Papanastasiou10 used a shear prehistory,
which gives oscillatory stresses at high Weissenberg
numbers, as shown earlier in Figure 8. Also they have
not shown any results for high Weissenberg numbers
in their previous simulations, and even the limiting
case for Ws ¼ 0.001 shows discrepancies from the
Newtonian solution. These facts raise serious ques-
tions about the validity of the study conducted by
Alaie and Papanastasiou.10 Another work12 has also
raised questions concerning the study by Alaie and
Papanastasiou10 with regard to the simulation of
Gupta’s experiments.18 In particular, it refers to the
ratio of the machine stress to the hoop stress, tss*/ttt*.
Kurtz12 stated that there must have been an error in
converting units, which was initially done by
Gupta.18 However, it is unlikely that Alaie and Papa-
nastasiou10 repeated this error since with the operat-
ing conditions as boundary conditions, the simula-
tions should have uncovered this error automatically
and should not have been repeated. Kurtz12 also

states that for the given film-blowing governing equa-
tions [eqs. (8) and (9)], the machine direction stress,
tss*, should always be greater than the hoop stress,
ttt*. In their corresponding figure, Alaie and Papanas-
tasiou10 report the hoop stress to be larger than the
machine-direction stress, which is impossible with
the current film-blowing governing equations. Our
own simulations always gave results for the stress ra-
tio in agreement with Kurtz’s statement. It appears,
therefore, at present that the experimental data by
Gupta have not been successfully simulated in the
open literature with a fully nonisothermal viscoelastic
model.

CONCLUSIONS

Numerical viscoelastic simulations have been under-
taken for the film-blowing process. The governing
equations used are those introduced earlier by Pearson
and Petrie.1,2 Isothermal Newtonian and upper-con-
vected Maxwell (UCM) results have been successfully
reproduced using an integral constitutive equation of
the K-BKZ type. Shear prehistory in the evaluation of
the integral stresses was compared with extensional
prehistory, and the latter was proven to be superior,
resulting in smooth stress profiles. Nonisothermal vis-
coelasticity has been handled both by theMorland–Lee
hypothesis, using a pseudotime time-temperature
shifting method, and by an alternative method, which
shifts the relaxation times by the appropriate shift fac-
tor. The two cases have been examined for theMaxwell
model case and were shown to give almost identical
results. The Morland–Lee hypothesis is preferred due
to its efficiency.

Comparison of numerical simulations with experi-
ments on a polymer melt (LDPE) resulted in poor
qualitative agreement in terms of bubble radius and
film velocity. Also, the numerical predictions under-
estimate the force and overestimate the pressure. The
reason for this disagreement was attributed to the
inability of the governing model (thin-shell approxi-
mation and force balances) to take into effect mainly
the aerodynamic forces from the turbulent air mass
cooling the film from outside the bubble. However,
the current simulations showed good agreement with
previous nonisothermal simulations11 employing a
purely viscous model. Therefore, a nonisothermal
viscoelastic model does not give better predictions
than a nonisothermal Newtonian model, contrary to
previous suppositions.11 Comparisons were also
made with a previous simulation conducted by Alaie
and Papanastasiou,10 which raised serious questions
concerning their study.

The stability of the film-blowing numerical scheme
has been previously studied7 for Newtonian and Max-
well fluids, where multiplicities are to be expected.
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However, the discrepancy between the current simula-
tions and experiments is more than likely not because
of multiplicities, but rather an inability of the model to
accurately predict the forces exerted on the film. Em-
phasis is again given to the effects of aerodynamic
forces from turbulent cooling air supplied to the
bubble.
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